Add Products to the Cart to Obtain Instant Discounts!

Why installing an automatic boiler blowdown system?

March 03, 2016 0 Comments

Why installing an automatic boiler blowdown system?

Background

To reduce the levels of suspended and total dissolved solids in a boiler, water is periodically discharged or blown down. High dissolved solids concentrations can lead to foaming and carryover of boiler water into the steam. This could lead to water hammer, which may damage piping, steam traps, or process equipment. Surface blowdown removes dissolved solids that accumulate near the boiler liquid surface and is often a continuous process.

Suspended and dissolved solids can also form sludge. Sludge must be removed because it reduces the heat-transfer capabilities of the boiler, resulting in poor fuel-to-steam efficiency and possible pressure vessel damage. Sludge is removed by mud or bottom blowdown.

During the surface blowdown process, a controlled amount of boiler water containing high dissolved solids concentrations is discharged into the sewer. In addition to wasting water and chemicals, the blowdown process wastes heat energy, because the blowdown liquid is at the same temperature as the steam produced—approximately 366°F for 150-pounds-per-square-inch-gauge (psig) saturated steam—and blowdown heat recovery systems, if available, are not 100% efficient. (Waste heat may be recovered through the use of a blowdown heat exchanger or a flash tank in conjunction with a heat recovery system. For more information, see Steam Tip Sheet #10, Recover Heat from Boiler Blowdown.)

 Lakewood Instruments model 150 auto blowdown system for boiler

Advantages of Automatic Control Systems

With manual control of surface blowdown, there is no way to determine the concentration of dissolved solids in the boiler water, nor the optimal blowdown rate. Operators do not know when to blow down the boiler, or for how long. Likewise, using a fixed rate of blowdown does not take into account changes in makeup and feedwater conditions, or variations in steam demand or condensate return.

An automatic blowdown-control system optimizes surface-blowdown rates by regulating the volume of water discharged from the boiler in relation to the concentration of dissolved solids present. Automatic surface-blowdown control systems maintain water chemistry within acceptable limits, while minimizing blowdown and reducing energy losses. Cost savings come from the significant reduction in the consumption, disposal, treatment, and heating of water

 How it Works

With an automatic blowdown-control system, high- or low-pressure probes are used to measure conductivity. The conductivity probes provide feedback to a blowdown controller that compares the measured conductivity with a set-point value, and then transmits an output signal that drives a modulating blowdown release valve.

Conductivity is a measure of the electrical current carried by positive and negative ions when a voltage is applied across electrodes in a water sample. Conductivity increases when the dissolved ion concentrations increase.

The measured current is directly proportional to the specific conductivity of the fluid. Total dissolved solids, silica, chloride concentrations, and/ or alkalinity contribute to conductivity measurements. These chemical species are reliable indicators of salts and other contaminants in the boiler water.

Applications

Boilers without a blowdown heat-recovery system and with high blowdown rates offer the greatest energy-savings potential. The optimum blowdown rate is determined by a number of factors, including boiler type, operating pressure, water treatment, and makeup-water quality. Savings also depend upon the quantity of condensate returned to the boiler. With a low percentage of condensate return, more makeup water is required and additional blowdown must occur. Boiler blowdown rates often range from 1% to 8% of the feedwater flow rate, but they can be as high as 20% to maintain silica and alkalinity limits when the makeup water has a high solids content.

Price and Performance Example

For a 100,000 pound-per-hour (lb/ hr) steam boiler, decreasing the required blowdown rate from 8% to 6% of the feedwater flow rate will reduce makeup water requirements by approximately 2,300 lb/hr. (See Steam Tip Sheet #9, Minimize Boiler Blowdown.) Annual energy, water, and chemicals savings due to blowdown rate reductions for a sample system are summarized in the table below. In many cases, these savings can provide a 1- to 3-year simple payback on the investment in an automatic blowdown-control system.

Savings Through Installation of Automatic Blowdown-Control System

Blowdown Reduction, lb/hr

Annual Savings, $

Fuel

Water and Chemicals

Total

1,000

27,200

4,200

31,400

2,000

54,400

8,400

62,800

4,000

108,800

16,800

125,600

 

Note: Based on continuous operation of a 150-psig, natural gas-fired steam boiler with fuel valued at $8.00 per million Btu ($8.00/MMBtu), a makeup water temperature of 60°F, and a boiler efficiency of 80%. Water, sewage, and chemical treatment costs are estimated at $0.004 per gallon.

Purchasing and installing an automatic blowdown-control system can cost from $2,500 to $6,000 (Boiler Control Package). The complete system consists of a low- or high-pressure conductivity probe, temperature compensation and signal conditioning equipment, and a blowdown-modulating valve. Some systems are designed to monitor both feedwater and blowdown conductivity from multiple boilers. A continuous conductivity recording capability might also be desired. The total cost of the automatic blowdown system is dependent upon the system operating pressure and the design and performance options specified.

Recommended Practices

The American Society of Mechanical Engineers (ASME) has developed a consensus on operating practices for boiler blowdown. Sections VI and VII of the ASME Boiler and Pressure Vessel Code describe recommended practices. The ASME Boiler and Pressure Vessel Code can be ordered through the ASME website at www.asme.org.

You can download the original paper from  U.S Department of Energy


Also in Blog

Advanced Cooling Tower Management: Enhancing Efficiency with Lakewood Model 140
Advanced Cooling Tower Management: Enhancing Efficiency with Lakewood Model 140

February 28, 2024 0 Comments

View full article →

Optimizing Cooling Tower Performance: Understanding Efficiency, Maintenance, and Water Quality Management
Optimizing Cooling Tower Performance: Understanding Efficiency, Maintenance, and Water Quality Management

February 28, 2024 0 Comments

Implementation of the Lakewood 3175 controller in cooling tower systems, emphasizing its significant role in enhancing operational efficiency, reducing chemical usage, and mitigating issues related to corrosion and deposition. It highlights the controller's ability to automate the management of water conductivity, ensuring optimal water quality and system performance. Examples and hypothetical calculations are provided to illustrate the controller's benefits, including water savings, cost reductions in chemical treatments, and energy efficiency gains through the prevention of scale buildup and corrosion. The Lakewood 3175 controller is presented as a strategic tool for achieving a more sustainable, efficient, and cost-effective cooling tower operation, demonstrating the value of advanced technology in industrial water management.

View full article →

Revolutionizing Water Analysis: Everything You Need to Know About the Kemio KEM10DIS
Revolutionizing Water Analysis: Everything You Need to Know About the Kemio KEM10DIS

April 19, 2023 0 Comments

The Palintest Kemio KEM10DIS is a highly accurate, fast, and easy-to-use water analysis device that offers several advantages over other methods. Its portability and wide measurement range make it ideal for use in a range of applications, from drinking water to industrial process water. With its patented Dual-Field technology and fast results, the Palintest Kemio KEM10DIS can help to improve the efficiency of water treatment processes and reduce the risk of contamination. Compared to other methods, the device is highly accurate and easy to use, making it accessible to a wide range of users. By following the simple procedure outlined above, users can quickly and easily obtain accurate results for a range of parameters, helping to ensure the safety and quality of water for various applications.

View full article →