Add Products to the Cart to Obtain Instant Discounts!

Methods for determining chlorine dioxide and its oxychlorine by-products in water

September 01, 2017 0 Comments

Methods for determining chlorine dioxide and its oxychlorine by-products in water

The analysis of chlorine dioxide and its oxychlorine by products in water is a difficult topic due to the volatility of chlorine dioxide and to the interferences from other species with standard test methods. In the real samples, this is further complicated as chlorine dioxide is often used in a system which is dynamic and therefore sampling is also important.

USEPA Regulations

The USEPA require that both chlorine dioxide (ClO2) and chlorite (ClO2-) are monitored daily at the start of a distribution network and that chlorite is measured less frequently at various points throughout a network. Chlorate is not required, although is included under the Information Collection Rule.

The following are methods that have been approved by the USEPA for ClO2 monitoring:

  • Amperometric titration (Standard Method 4500 - ClO2 E)
  • Colorimetric DPD (Standard Method 4500 - ClO2 D)
  • Colorimetric Lissamine Green (USEPA Method 327.0 V1.1)
  • ChlordioX Plus Sensor System

As DPD has been removed as a standard method for determining ClO2 by the AWWA Standard Methods committee, the EPA will also probably remove it sooner rather than later.

As for chlorite, there are a few methods (such as ion chromatography) approved for chlorite monitoring. None of them are truly portable as the ChlordioX Plus is making it the only portable USEPA approved method for determining chlorite.

Methods in detail

  • Iodometric titration (Standard Method 4500 - ClO2 Method B) - Iodometric titration of ClO2, Cl2, ClO2- and ClO3- is possible with although it is a very difficult and time consuming procedure to separate all the oxychlorine species. It is a better method for standardising chlorine dioxide solutions.
  • Amperometric methods

Standard Method (4500 -ClO2 Method C) - Amperometric titration is an electrochemical method that measures current flow when a fixed voltage is applied to an electrode. By measuring the current whilst carrying out a titration with phenylarseine oxide, each oxychlorine species can be separated out and quantified. However, Method C has now been removed as an EPA approved method for measuring chlorine dioxide in drinking water due to inherent weaknesses in the test method.

Amperometric Method (4500 - ClO2 Method E) - Principle is as per Method C and the procedure is also similar but the inherent test weaknesses are avoided. This method is the standard method which all the ChlordioX Plus evaluations were compared to and is the industry standard method. In theory, as well as chlorine dioxide, chlorine and chlorite, chlorate can also be carried out using this method but it is complicated and therefore usually carried out via ion chromatography.

  • DPD method Colorimetry (4500 - ClO2 Method D - Reserved) - The industry standard for portable testing of chlorine dioxide (and to a degree chlorite) but according to recent research is not selective enough in the presence of both chlorine dioxide and chlorite and also suffers from other interferences such as chromate and oxidised manganese. It is no longer a standard method (AWWA) but is still an EPA approved method.
  • Lissamine (LGB) Green - Not a standard method but an EPA approved method for measuring chlorine dioxide (and chlorite in the presence of horseradish peroxidase). It is temperature dependent as it removes colour from the lissamine green indicator and, therefore, is not easy to use in the field and at its best in a laboratory environment.
  • Ion Chromatography (4110 Determination of Oxyhalides using Ion Chromatography) - The standard method for chlorite and chlorate determination and a USEPA requirement although obviously not a field test.
  • Spectrophotometry - Chlorine dioxide can be measured photometrically at 360nm using a standard spectrophotometer although the detection limit is relatively high and solutions containing chlorine dioxide and chlorite can be susceptible to interference (especially at longer wavelengths) so again it is best used as a tool for standardisation of solutions. Some field test kits also use this method but at wavelengths in the visible region.

Other colorimetric methods

Other colorimetric methods are available however none are approved for compliance testing.

This summary of methods is based on White’s Handbook of Chlorination and Alternative Disinfectants by the Black and Veatch Corporation, published by Wiley in 2010.

See here for a list of EPA methods approved for chlorine dioxide and chlorite monitoring under the alternative test methods program


Also in Blog

Revolutionizing Water Analysis: Everything You Need to Know About the Kemio KEM10DIS
Revolutionizing Water Analysis: Everything You Need to Know About the Kemio KEM10DIS

April 19, 2023 0 Comments

The Palintest Kemio KEM10DIS is a highly accurate, fast, and easy-to-use water analysis device that offers several advantages over other methods. Its portability and wide measurement range make it ideal for use in a range of applications, from drinking water to industrial process water. With its patented Dual-Field technology and fast results, the Palintest Kemio KEM10DIS can help to improve the efficiency of water treatment processes and reduce the risk of contamination. Compared to other methods, the device is highly accurate and easy to use, making it accessible to a wide range of users. By following the simple procedure outlined above, users can quickly and easily obtain accurate results for a range of parameters, helping to ensure the safety and quality of water for various applications.

View full article →

Optimizing Cooling Tower Performance with Conductivity Controllers
Optimizing Cooling Tower Performance with Conductivity Controllers

April 17, 2023 0 Comments

Cooling towers play a critical role in industrial processes, but issues such as scaling, corrosion, and microbiological growth can cause reduced efficiency, increased maintenance costs, and even equipment failure. Fortunately, conductivity controllers like the Lakewood Instruments 1575e can help optimize cooling tower performance. A case study found that after installing the controller, a manufacturing facility was able to significantly improve the tower's performance by reducing water consumption by over 20% and saving over $10,000 per year on chemical usage. Additionally, the facility was able to reduce its environmental footprint. Overall, conductivity controllers are a worthwhile investment for any facility with a cooling tower, as they can lead to significant cost savings and environmental benefits.

View full article →

Cooling tower
Avoid this issues when starting a cooling tower

March 20, 2023 0 Comments

Conductivity controllers are critical devices in cooling tower systems, but they can develop issues when the tower has been dry for several months.

View full article →