Add Products to the Cart to Obtain Instant Discounts!

Fundamental Economic Justification for Boiler Blowdown Automatic Control

May 22, 2017

Fundamental Economic Justification for Boiler Blowdown Automatic Control

Minimize Boiler Blowdown

Minimizing your blowdown rate can substantially reduce energy losses, as the temperature of the blown-down liquid is the same as that of the steam generated in the boiler. Minimizing blowdown will also reduce makeup water and chemical treatment costs.

As water evaporates in the boiler steam drum, solids present in the feedwater are left behind. The suspended solids form sludge or sediments in the boiler, which degrades heat transfer. Dissolved solids promote foaming and carryover of boiler water into the steam. To reduce the levels of suspended and total dissolved solids (TDS) to acceptable limits, water is periodically discharged or blown down from the boiler. Mud or bottom blowdown is usually a manual procedure done for a few seconds on intervals of several hours. It is designed to remove suspended solids that settle out of the boiler water and form a heavy sludge. Surface or skimming blowdown is designed to remove the dissolved solids that concentrate near the liquid surface. Surface blowdown is often a continuous process.

Insufficient blowdown may lead to carryover of boiler water into the steam, or the formation of deposits. Excessive blowdown will waste energy, water, and chemicals. The optimum blowdown rate is determined by various factors including the boiler type, operating pressure, water treatment, and quality of makeup water. Blowdown rates typically range from 4% to 8% of boiler feedwater flow rate, but can be as high as 10% when makeup water has a high solids content.

Example

Assume that the installation of an automatic blowdown control system (see page 2) reduces your blowdown rate from 8% to 6%. This example assumes a continuously operating natural gas-fired, 150-psig, 100,000-pound-per-hour (lb/hr) steam boiler. Assume a makeup water temperature of 60°F, boiler efficiency of 80%, with fuel valued at $8.00 per million Btu ($8.00/MMBtu), and the total water, sewage, and treatment costs at $0.004 per gallon. Calculate the total annual cost savings.

Suggested Action

Review your blowdown practices to identify energy-saving opportunities.

Examine operating practices for boiler feedwater and blowdown rates developed by the American Society of Mechanical Engineers (ASME). Considerations include operating pressure, steam purity, and deposition control.

Consider an automatic blowdown control system

Example

Assume that the installation of an automatic blowdown control system (see page 2) reduces your blowdown rate from 8% to 6%. This example assumes a continuously operating natural gas-fired, 150-psig, 100,000-pound-per-hour (lb/hr) steam boiler. Assume a makeup water temperature of 60°F, boiler efficiency of 80%, with fuel valued at $8.00 per million Btu ($8.00/MMBtu), and the total water, sewage, and treatment costs at $0.004 per gallon. Calculate the total annual cost savings.

 

 

Automatic Blowdown Control Systems

These systems optimize surface blowdown by regulating water volume dis-charged in relation to amount of dissolved solids present. Conductivity, TDS, silica or chlorides concentrations, and/or alkalinity are reliable indicators of salts and other contaminants dissolved in boiler water. A probe provides feedback to a controller driving a modulating blowdown valve. An alternative is proportional control – with the blowdown rate set proportional to the makeup water flow.

 

Cycles of Concentration

“Cycles of concentration” refers to the accumulation of impurities in the boiler water. If the boiler water contains 10 times the level of impurities in the makeup water, it is said to have 10 cycles of concentration.

 

Leave a comment

Comments will be approved before showing up.


Also in Blog

How does a cooling tower work ?
How does a cooling tower work ?

March 02, 2021

Common applications include cooling the circulating water used in oil refineries, petrochemical and other chemical plants, thermal power stations, nuclear power stations and HVAC systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are natural draft and induced draft cooling towers.

View full article →

How does the cooling tower startup work?
How does the cooling tower startup work?

March 01, 2021

The primary goal of effective water treatment is to provide and maintain clean heat transfer, piping, and other water contact surfaces.  Even before cooling tower start-up, surfaces are exposed to the elements of air and water, and that has an impact on four main areas:

View full article →

Peracetic acid - the new hero in hospitals
Peracetic acid - the new hero in hospitals

February 08, 2021

Unlike bleach (sodium hypochlorite), it does not linger on surfaces. PAA components are completely biodegradable to its base elements of hydrogen peroxide and acetic acid.  In comparison to bleach, which requires rinsing after use, PAA does not need to be rinsed off surfaces. When used correctly, it can be used to sanitize surfaces, vessels, closed systems and equipment safely, ensuring surfaces remain sanitized until required.

View full article →