Add Products to the Cart to Obtain Instant Discounts!

El arrastre de la caldera - causa, efecto y prevención

August 15, 2017 1 Comment

El arrastre de la caldera - causa, efecto y prevención

Mecanismos

El arrastre también conocido como cavado, es cualquier contaminante sólido, líquido o en forma de vapor que sale de una caldera con el vapor. En calderas de presión media (<100 bar) agua de la caldera arrastrado es la causa más común de contaminación de vapor.

Ambos factores mecánicos tales como diseño de la caldera, altos niveles de agua, características de carga y factores químicos tales como alta concentración de sólidos, la alcalinidad excesiva, presencia de contaminantes contribuyen a la creación de arrastre.

Dos de las causas mecánicas más comunes de arrastre son operación en exceso de carga de diseño y los aumentos repentinos en la carga.

La formación de espuma es uno de los mecanismos de arrastre químico. tendencias de formación de espuma se incrementan con el aumento de la alcalinidad y el contenido de sólidos. burbujas de espuma estable contienen sólidos de la caldera y se llevan hacia delante con el vapor que da lugar a arrastre.

otros contaminantes orgánicos de aceite y pueden reaccionar con caldera alcalinidad agua para dar materiales activos de superficie en bruto, que causan formación de espuma y arrastre.

Efectos

sólidos del agua de la caldera arrastrados con el vapor formarán depósitos en antirretorno y otras válvulas de control. corrientes de proceso pueden ser contaminados por el arrastre que afectan a la calidad del producto.

Deposición en sobrecalentadores puede conducir al fracaso debido al sobrecalentamiento y la corrosión.

Las turbinas de vapor son potencialmente propenso a sufrir daños por el arrastre en forma de depósitos en álabes de la turbina crea desequilibrio reduciendo la eficiencia y capacidad. Las partículas sólidas en el vapor pueden conducir a la erosión y la corrosión en ambos turbinas y otros equipos.

 

Prevención del arrastre

El primer medio de impedir el arrastre es tener buenos dispositivos de separación de vapor mecánicas. Para calderas de baja / media presión de tubo de fuego donde la pureza de vapor no es estricta, separación por gravedad es normalmente satisfactorio. (Por lo menos 14 bar y saturación condiciones la densidad del agua es de 115 veces mayor que la de vapor). Como la presión de vapor se eleva la diferencia de densidad reduce (en 69 agua barra sólo es 20 veces más densas que el vapor) haciendo la separación por gravedad menos eficaz. separadores de vapor se utilizan entonces para mejorar la pureza y por lo general se instalan en el tambor de vapor de las calderas de tubos de agua.

separadores primarios utilizan la diferencia en la densidad como el medio de separación sin pasar vapor a través de una serie de deflectores que reduce separadores (ciclón) centrífugas turbulencia o.

separadores secundarias, donde el vapor se dirige en un patrón de frecuencia de marcha atrás a través de una gran superficie de contacto. Una niebla de agua de la caldera se acumula en la superficie y se drena de la unidad.

El control de la química del agua de la caldera es esencial para minimizar el arrastre y permitir la separación mecánica para trabajar eficazmente. Los parámetros que deben ser controlados son:

  • Sólidos disueltos totales
  • Alcalinidad
  • Sílice
  • La contaminación orgánica.

Estos deben mantenerse dentro de las pautas del fabricante de la caldera o las de BS 2486.

Siempre que el arrastre está siendo causado por concentraciones excesivas de agua de la caldera un aumento de la tasa de purga de la caldera es normalmente la solución más simple y más conveniente. Si el arrastre se sigue produciendo y el aumento de purga es antieconómico entonces la adición de agentes antiespumantes puede reducir económicamente arrastre. El uso de un agente antiespumante puede permitir que la caldera funcione a concentraciones más altas de agua, agua de alimentación ofrecen un producto llamado Antiespumante C, que es adecuado para este trabajo, para obtener más información, visite la página del producto para la orientación del uso del producto.

Lea más en https://feedwater.co.uk/boiler-carryover-cause-effect-prevention/

1 Response

Arturo Arcaya
Arturo Arcaya

April 01, 2020

Buenas ideas

Leave a comment

Comments will be approved before showing up.


Also in Blog

How does a cooling tower work ?
How does a cooling tower work ?

March 02, 2021

Common applications include cooling the circulating water used in oil refineries, petrochemical and other chemical plants, thermal power stations, nuclear power stations and HVAC systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are natural draft and induced draft cooling towers.

View full article →

How does the cooling tower startup work?
How does the cooling tower startup work?

March 01, 2021

The primary goal of effective water treatment is to provide and maintain clean heat transfer, piping, and other water contact surfaces.  Even before cooling tower start-up, surfaces are exposed to the elements of air and water, and that has an impact on four main areas:

View full article →

Peracetic acid - the new hero in hospitals
Peracetic acid - the new hero in hospitals

February 08, 2021

Unlike bleach (sodium hypochlorite), it does not linger on surfaces. PAA components are completely biodegradable to its base elements of hydrogen peroxide and acetic acid.  In comparison to bleach, which requires rinsing after use, PAA does not need to be rinsed off surfaces. When used correctly, it can be used to sanitize surfaces, vessels, closed systems and equipment safely, ensuring surfaces remain sanitized until required.

View full article →