New appearance, same quality!

Chlorine Dioxide in Brewing Process Water

October 17, 2017 0 Comments

Chlorine Dioxide in Brewing Process Water

Brewing up Success

UK-based Fuller, Smith and Turner Ltd have been brewing some of Britain’s most popular beers by the Thames since 1845. Producing over 70,000 litres of beer every day comes with significant water management challenges – for any brewery of this size.

Fuller’s, however, goes one step further to ensure its flagship organic product, Honey Dew, stays all natural and chemical free - from the first grain to the last bottle.

The brewing process utilizes water in several different ways, using some for the final product and some for the production processes. The water that is used to make the beer, known as brewing liquor, has been highly purified to remove trace chemicals such as chlorine which are added by water utility companies.

This helps to protect the unique strains of yeast used by Fuller’s to make its wide variety of beers and ales.

A separate stream of water is used for cleaning tanks, powering heat exchangers and rinsing bottles. This water, known as process liquor, is also highly purified, however a disinfectant needs to be added to prevent microbiological contamination.

Rather than using traditional disinfectants which have long-lasting residuals and can form organic disinfection by-products, Fuller’s has implemented a chlorine dioxide dosing system.

Why is ClO2 Better?

Making Sure the Chlorite’s Alright

One of the few by-products formed is the oxidised form of chlorine dioxide, called chlorite (ClO2-). Being able to accurately measure chlorite is essential as the Soil Association set an upper limit of 0.5 ppm for water that could potentially come into contact with an organic product.

In order to ensure the organic approval of its product, Fuller’s has turned to the Palintest ChlordioX Plus, which is the only portable instrument with EPA approval for measuring chlorine dioxide and chlorite. Using Palintest’s unique disposable sensor technology, the ChlordioX Plus utilises chronoamperometry which eliminates the interferences typically associated with colorimetric methods.

Amperometric methods are traditionally the domain of large laboratory instrumentation which require high levels of user care and maintenance of the electrodes, both of which have been overcome with the ChlordioX Plus, in an instrument a fraction of the size and a fraction of the capital investment.

This allows Fuller’s to accurately monitor the quality of its process liquor across its site, without the need transport samples to a lab. This efficiency means the right dosing decisions can be made at the right time and the brewery can keep producing great tasting organic beer.

Read this article at  Palintest


Also in Blog

Chemical injection quill for oil and gas application
Chemical injection quill for oil and gas application

January 20, 2021 0 Comments

Chemical injection quill is a mechanical device used in the chemical injection process used across many industries. It is an interface equipment between the chemical feed line and the process pipeline. The injected chemicals are controlled to achieve chemical reaction while the quill helps to disperse this into the process pipeline.

 

Please read original article @ https://as-schneider.blog/2020/07/01/chemical-injection-quill-for-oil-gas-application/

 

View full article →

Why Does Kemio™ Perform Better Than Drop Count In Poultry Processing?
Why Does Kemio™ Perform Better Than Drop Count In Poultry Processing?

November 12, 2020 0 Comments

Have you ever experienced a variation in PAA readings across different operators, shifts or even departments at your poultry processing plant? How about a change in readings when you switch between drop kit brands? Have you ever obtained stable PAA readings only to suddenly discover that PAA levels are actually much hi

View full article →

COVID-19 Guidance for Legionella and Building
COVID-19 Guidance for Legionella and Building

September 03, 2020 0 Comments

The focus of this guidance is to reduce Legionella growth and other pathogen and corrosion concerns that occur when there is a large drop in building water use. The guidance focuses on potable water systems inside larger buildings with complex plumbing and the information is general in nature. Each building is different and will require different actions based on its plumbing systems, use patterns, and source of water supply.

View full article →