Call us:+1-800-613-2974

Add Products to the Cart to Obtain Instant Discounts!

Fundamentos de Tratamiento de Torres de Enfriamiento - Medicion de Conductividad

November 16, 2015 0 Comments

Fundamentos de Tratamiento de Torres de Enfriamiento - Medicion de Conductividad

La conductividad ha sido el método primordial de medir el contenido de minerales en el agua, por más de un siglo. Como método de medición en línea, provee monitoreo en línea confiable y económica, de la calidad del agua a través de varias etapas del tratamiento. La tecnología para la medición de la conductividad ha mejorado atreves de varias generaciones de circuitos de medición analógica y digital, mejorando la precisión y la compensación por temperatura.

Cuando se aplica voltaje entre los dos electrodos, los iones que se encuentran entre los electrodos, son atraídos hacia el electrodo con la polaridad contraria a la carga del ion. La migración de iones crea una corriente eléctrica que se mueve atreves del fluido. Esta corriente es utilizada para la medición de la conductividad. Sin embargo, si la migración de iones y las reacciones electromecánicas en la superficie de los electrodos son significativas, pueden interferir con la medición de la conductividad. Estos efectos son llamados polarización.

Para minimizar la polarización, se utiliza voltaje alterno (AC) para la medición de la conductividad. Los cambios en polaridad ocurren con suficiente frecuencia como para que los iones no se muevan o reaccionen. Adicionalmente, en los instrumentos mas modernos, el voltaje y la frecuencia aplicada, son seleccionadas automáticamente por el instrumento en base al rango de medición, para obtener la mejor medición con la mínima interferencia. Esta opción es invisible al usuario.

La constante de la celda de medición, determinada por la geometría de los electrodos, es otro factor crítico para la medición. Lecturas de conductividades bajas, generalmente, requieren valores de celda bajos con relativamente grandes superficies de electrodos y bajos espacios entre electrodos, para poder obtener una buena señal sin tener que medir una resistencia muy grande.

Mediciones de conductividad alta, generalmente, requieren sensores con valores de celda altos. Esto significa superficies de medición más pequeñas con densidades de corriente más altas y espacios entre electrodos grandes, para prevenir el tener que medir Resistencia demasiado bajas.

La mayoría de los sensores de conductividad en el rango bajo a moderado, utilizan el diseño de celda coaxial, con un electrodo en el centro uy el otro electrodo alrededor, con lo cual se consigue exactamente la misma rata que el de dos placas paralelas.

Trabajos previos han detallado la determinación de la constante de la celda, y se puede rastrear hasta los estándares ASTM y NIST, como ha influenciado el diseño y proceso de calibración de los sensores de conductividad.

En instalaciones reales, la vulnerabilidad a las interferencias de burbujas y particulado, se puede reducir si se hace que el espacio entre electrodos sea más grande. Adicionalmente, más espacio entre electrodos produce menos restricciones al flujo y respuesta más rápida a los cambios, lo cual puede ser útil en los procesos de retro lavado de los deionizadores. Por lo tanto, hay una ventaja si se puede proveer un circuito que permita la medición de agua pura con una constante de celda alta.

Los sensores integrales que se describen aquí utilizan una constante de celda nominal para el rango completo entre 0.1 cm y 1, incluyendo mediciones precisas de agua ultra-pura. Otros instrumentos deben utilizar constantes de celda más bajos con superficies de electrodos más grandes y más cercanos. En algunas aplicaciones la confiabilidad de la medición puede ser mejorada significativamente mediante la utilización de constantes de celda alta pero el circuito de medición debe ser capaz de acomodarlo. Las especificaciones de rango deben ser revisadas y consideradas cuidadosamente.

¡Regístrese para recibir nuestra carta mensual, artículos y ofertas!


Also in Blog

How does a cooling tower work ?
How does a cooling tower work ?

April 15, 2021 0 Comments

warm effluent from the plant heat exchangers enters the tower and is sprayed over the cooling tower fill. Air enters the lower portion of the tower and contacts the water in a counter-current manner to help maximize heat transfer. The cooled water collects in a sump for return to the heat exchangers, while the warm air exhaust vents to the atmosphere.

View full article →

What is a heat exchanger?
What is a heat exchanger?

April 12, 2021 0 Comments

Heat exchangers are devices designed to transfer heat between two or more fluids—i.e., liquids, vapors, or gases—of different temperatures. Depending on the type of heat exchanger employed, the heat transferring process can be gas-to-gasliquid-to-gas, or liquid-to-liquid and occur through a solid separator, which prevents mixing of the fluids, or direct fluid contact.

View full article →

Do water softeners remove chlorine?
Do water softeners remove chlorine?

April 12, 2021 0 Comments

When oxidizing agents—such as chlorine, chlorine dioxide, chloramine, and ozone—come into contact with both cation and anion resins under certain conditions, they can damage the resins, leading to capacity loss and inhibited performance. When present in a feed stream, oxidants degrade IX resin polymers, causing them to deform and compact over time. This compaction obstructs the flow of liquids through the resin bed, which can compromise the overall effectiveness of the IX unit, and lead to inconsistent effluent quality due to channeling in the resin bed.

View full article →