warm effluent from the plant heat exchangers enters the tower and is sprayed over the cooling tower fill. Air enters the lower portion of the tower and contacts the water in a counter-current manner to help maximize heat transfer. The cooled water collects in a sump for return to the heat exchangers, while the warm air exhaust vents to the atmosphere.
Heat exchangers are devices designed to transfer heat between two or more fluids—i.e., liquids, vapors, or gases—of different temperatures. Depending on the type of heat exchanger employed, the heat transferring process can be gas-to-gas, liquid-to-gas, or liquid-to-liquid and occur through a solid separator, which prevents mixing of the fluids, or direct fluid contact.
When oxidizing agents—such aschlorine, chlorine dioxide, chloramine, and ozone—come into contact with both cation and anion resins under certain conditions, they can damage the resins, leading tocapacity loss and inhibited performance. When present in a feed stream, oxidants degrade IX resin polymers, causing them to deform and compact over time. This compaction obstructs the flow of liquids through the resin bed, which can compromise the overall effectiveness of the IX unit, and lead to inconsistent effluent quality due to channeling in the resin bed.