Add Products to the Cart to Obtain Instant Discounts!

False Chlorine Readings

April 25, 2016

False Chlorine Readings

A growing number of water systems have naturally occurring ammonia (NH3-N) and organic contaminants (TOC) in their water supplies. These contaminants react with chlorine treatment to form combined chlorine residuals (chloramines, chlororganics), if insufficient chlorine is applied to reach breakpoint free chlorine residuals. In this case, when testing the water for free chlorine residual, the DPD reagents register trace levels of free chlorine that does not really exist in the water. Since many operators only test for free chlorine residual, and do not check for total chlorine, ammonia or TOC, they are unaware their chlorine residual analysis results may be a 'phantom' false-positive result.

The DPD free chlorine reagents may develop a phantom color ranging from faint pink (0.1 mg/L) to a dark magenta color (1.0+ mg/L) depending on how much chloramine is in the water sample. This problem can be identified at the water plant or well house with additional testing.

However, authentic free chlorine residuals at the source may also convert into phantom residuals in the distribution system, when water containing chloramine residuals from other wells, sources, or consecutive water systems mix together. When insufficient free chlorine residuals react with biofilm deposits and corrosion byproducts in the distribution system, they dissipate, leaving taste and odor causing di-chloramine & tri-chloramine residuals to remain behind in the system

Some water operators are able to effectively maintain optimal free chlorine residuals (85% of total residual) in their water system. While other water systems generate odors, taste, or disinfection byproducts (THM, HAA) when sufficient ammonia-N (>0.5 mg/L), and/or total organic carbon (TOC > 1 mg/L), demand and combine with free chlorine residuals offsetting the breakpoint.

Nuisance bacteria (iron, sulfur, slime forming organisms) often accompany the ammonia and TOC, creating a troublesome water quality. If you have some of these indicators, or find it difficult to maintain authentic free chlorine residuals, consider the following steps for corrective action:

 

False Chlorine Check List

1.To learn if phantom residuals exist, perform a DPD free chlorine test, record the immediate reading and observe the sample color for several more minutes. If the sample drifts to higher readings a phantom residual may exist and interfere with true DPD chlorine readings.

2.To determine the cause, analyze water for ammonia (ion selective electrode or colorimetric analysis), monochloramine total organic carbon (TOC).

3.Calculate (Free ammonia mg/L = Total ammonia mg/L - Monochloramine mg/L).

If ammonia exists (> 0.5 mg/L), chloramines may adversely interfere with the DPD free test method.

 

4.To identify the location of your chlorine residual on the breakpoint curve, calculate your chlorine dosage and demand, to project an approximate location on the breakpoint curve (see full article in AWWA Opflow June 2008, p. 24-27).

 

 

Leave a comment

Comments will be approved before showing up.


Also in Blog

How does a cooling tower work ?
How does a cooling tower work ?

March 02, 2021

Common applications include cooling the circulating water used in oil refineries, petrochemical and other chemical plants, thermal power stations, nuclear power stations and HVAC systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are natural draft and induced draft cooling towers.

View full article →

How does the cooling tower startup work?
How does the cooling tower startup work?

March 01, 2021

The primary goal of effective water treatment is to provide and maintain clean heat transfer, piping, and other water contact surfaces.  Even before cooling tower start-up, surfaces are exposed to the elements of air and water, and that has an impact on four main areas:

View full article →

Peracetic acid - the new hero in hospitals
Peracetic acid - the new hero in hospitals

February 08, 2021

Unlike bleach (sodium hypochlorite), it does not linger on surfaces. PAA components are completely biodegradable to its base elements of hydrogen peroxide and acetic acid.  In comparison to bleach, which requires rinsing after use, PAA does not need to be rinsed off surfaces. When used correctly, it can be used to sanitize surfaces, vessels, closed systems and equipment safely, ensuring surfaces remain sanitized until required.

View full article →