Sulfitos para el Control del Oxigeno

disipación de oxígeno y la desactivación son los métodos más comunes de control, llevados a cabo por medios mecánicos o químicos o por una combinación de los dos. Otros métodos populares de proteger el metal en una caldera son inhibidores de pasivación y de filmación. Los eliminadores químicos más comunes, de lejos, se basan en sulfitos y bisulfitos, un enfoque que puede ser muy eficaz si las presiones de calderas no son demasiado altos, y de sólidos totales se mantienen dentro de límites prescritos. View full article →
October 17, 2017

0 comments

agua ›   bombas dosificadoras ›  


El dióxido de cloro en la elaboración de la cerveza

En el Reino Unido Fuller, Smith y Turner Ltd han sido gestando algunas de las cervezas más populares de Gran Bretaña por el Támesis desde 1845. La producción de más de 70.000 litros de cerveza cada día viene con importantes desafíos de gestión del agua - para cualquier cervecería de este tamaño.

Fuller, sin embargo, da un paso más para asegurar su producto orgánico insignia, rocío de la miel, se queda totalmente natural y libre de productos químicos - desde el primer grano de la última botella.

El proceso de elaboración de la cerveza utiliza agua de varias maneras diferentes, el uso de algunos para el producto final y algunos para los procesos de producción. El agua que se utiliza para hacer la cerveza, conocida como licor de elaboración de la cerveza, ha sido altamente purificado para eliminar los productos químicos en trazas tales como el cloro que se añaden por empresas de servicio público de agua.

Esto ayuda a proteger las cepas únicas de levadura utilizadas por Fuller para hacer su amplia variedad de cervezas y cerveza.

Una corriente separada de agua se utiliza para la limpieza de los tanques, la alimentación de los intercambiadores de calor y enjuagar las botellas. Esta agua, conocida como licor de proceso, también está altamente purificado, sin embargo un desinfectante necesita ser añadido para evitar la contaminación microbiológica.

En lugar de utilizar desinfectantes tradicionales que tienen los residuos de larga duración y pueden formar desinfección subproductos orgánicos, Fuller de ha implementado un dióxido de cloro sistema de dosificación.

¿Por qué es ClO2 Mejor?

Cómo asegurarse bien del clorito

Uno de los pocos subproductos formados es la forma oxidada de dióxido de cloro, llamado clorito (ClO2-). Ser capaz de medir con precisión clorito es esencial ya que la Soil Association establece un límite superior de 0,5 ppm para el agua que potencialmente podrían entrar en contacto con un producto orgánico.

A fin de asegurar la aprobación orgánico de su producto, Fuller de ha convertido a la Palintest Chlordiox Plus, que es el único instrumento portátil con aprobación de la EPA para la medición de dióxido de cloro y el clorito. Utilizando la tecnología de sensor desechable único de Palintest, el Chlordiox Plus utiliza cronoamperometría que elimina las interferencias típicamente asociados con los métodos colorimétricos.

métodos amperométricos son tradicionalmente el dominio de grandes instrumentos de laboratorio que requieren altos niveles de atención al usuario y mantenimiento de los electrodos, los cuales han sido superadas con el Chlordiox Además, en un instrumento de una fracción del tamaño y de una fracción de la inversión de capital.

Esto permite Fuller de controlar con precisión la calidad de su licor de proceso a través de su sitio, sin necesidad de transporte las muestras a un laboratorio. Esta eficiencia significa que las decisiones correctas de dosificación se pueden hacer en el momento adecuado y la cervecería pueden seguir produciendo una cerveza orgánica degustación.

Leer este artículo enPalintest

El papel de los organofosfatos en tratamiento del agua refrigerante

Agua de refrigeración se utiliza en grandes industrias para eliminar el calor proceso no deseado con la ayuda de intercambiadores de calor, condensadores. Debido al contacto continuo de agua con la corrosión de la superficie metálica, la escala, la deposición y el ensuciamiento de la transferencia de calor se producen superficies. Estos causan daños al equipo y las pérdidas operativas y en ocasiones dar lugar costosa parada de la planta. La adición de inhibidores químicos en el control de estos problemas.

inhibidores basados ​​en cromato junto con polifosfatos, han estado en uso durante mucho tiempo y que han sido razonablemente eficaz contra la corrosión y la escala. Pero ellos tienen su propia limitación. Los polifosfatos se hidrolizan para ortofosfato a mayor temperatura de funcionamiento del circuito de agua de refrigeración, que conducen a escala ortofosfato. Ortofosfato formado es también un nutriente para el crecimiento bacteriano cromatos son tóxicos para la vida acuática y la preocupación ecológica ha sido la razón principal para la búsqueda de nuevas sustancias.

Entre las diversas substancia organofosforados stadius se han encontrado para ser el mejor. formulaciones basadas organofosforados dan una protección comparable con respecto a la corrosión, incrustaciones y el ensuciamiento y son hidrolíticamente estable. Esta estabilidad de organofosfatos permite una mayor flexibilidad, durante el funcionamiento, ya que son estables durante un mayor intervalo de pH y a temperatura más alta, reteniendo de ese modo su actividad durante periodos de tiempo más largos. El control de varios parámetros es más relajado y no - tóxico. Fosfonato son compatibles con la mayoría de otros productos químicos utilizados en los sistemas como el cloro de enfriamiento, biocidas no oxidantes, control de limo productos químicos etc. lentamente organofosfatos están encontrando más aceptación en todo el mundo, principalmente debido a su libertad de problema medio ambiente.

Propiedades de los organofosfonatos: Estructuralmente, organofosfatos tienen el átomo de carbono directamente unido al átomo de fósforo. Los dos organofosfonatos más utilizados en sistemas de refrigeración son:

“Inhibidores de la corrosión del sistema de refrigeración basado Seis de fosfato fueron estudiados por su corrosión relativa inhibición de las capacidades de un ensayo estático acelerado. La prueba estática fue estandarizado mediante el control de pH y la temperatura y el uso de un acelerador oxidante, persulfato de potasio. Los resultados indican que ortofosfato fosfonato aminotrimetilenfosfónico y hexametafosfato son los inhibidores de corrosión potenciales.

Seis inhibidores basados ​​en fosfato seleccionados son hexametafosfato de sodio (SHMP), tripolifosfato de sodio (STPP), pirofosfato tetrasódico (TSPP), ortofosfato de sodio (O-PO4), aminotrimetilenfosfónico fosfonato (ATMP) y difosfonato hidroxietiliden (HEDP), estos se utilizan con frecuencia en no -chromate tratamiento de agua de refrigeración basado.

Las propiedades clave de los organofosfatos son:

  1. Efecto de umbral y la distorsión de cristal.
  2. Estabilidad hidrolítica.
  3. Características de secuestro de carbono.
  4. deflocculation.

estabilidad 5. El cloro

Control de la corrosión:Control de la corrosión de la superficie metálica se puede obtener mediante la inhibición de la catódica, el anódica o estos tanto de reacción. Una combinación de organofosfonatos y zinc funciona sinérgicamente para dar muy buena protección contra la corrosión al interferir con la reacción catódica. Polifosfatos, cuando se utiliza como inhibidor de la corrosión, dan lugar a lodos de ortofosfato excesivas mientras que organofosfonatos con zinc dan buenos protección contra la corrosión sin conducir a ninguna formación de lodos.

Debido a la capacidad secuestrante de fosfonato, los iones de cinc están presentes en una forma complejada limitar la velocidad de reacción del zinc con iones hidroxilo. Por lo tanto, la concentración útil de hidróxido de zinc permite la formación de una película de hidróxido delgada en la superficie dando a la resistencia a la corrosión deseada.

Escala y control de ensuciamiento: Organofosfonatos son uno de los mejores agentes de control de depósito actualmente disponibles. El umbral y el cristal propiedad distorsión de estos compuestos interfiere con la nucleación de los cristales de dureza que causan niveles mucho más altos de dureza para permanecer en solución. Cuando se forman las escalas que son tan distorsionada que son no adherentes y formar lodos muy suaves. Fosfonato también proporcionan una excelente

El control de los depósitos de óxido férrico hidratado, que se forman como resultado de la corrosión. Ellos se adsorben sobre las superficies de las partículas y reducir las fuerzas de atracción entre las partículas de hierro individuales. La capacidad de secuestro de fosfonato le permite controlar la materia pesada depósitos (Fe, Cu y Zn) y este control es muy superior a otros quelantes tradicionales. Fosfonato también ayudan a dispersar las partículas en suspensión.

Elección de fosfonato: De los dos fosfonato más comúnmente utilizado para la refrigeración de tratamiento de agua HEDP se prefiere ATMP por las siguientes razones:

  1. ATMP es más corrosivo para los sistemas de refrigeración de Cu implican Cu o Cu aleaciones, son por lo tanto muy sensibles a ATMP. Con ATMP uno podría tener que usar inhibidores de la corrosión de Cu como tiazoles y Trizoles haciendo el tratamiento más caro. La corrosividad hacia Cu es debido al hecho de que una muy fuerte complejo con Cu se forma, la constante de disociación del quelato ser aproximadamente 10 -13.
  2. HEDP tiene mejor estabilidad al cloro que contiene nitrógeno ATMP. Compuesto que contiene nitrógeno tienen una tendencia a formar cloraminas. Sin embargo, cuando forma un complejo con zinc. ATMP exhibe estabilidad frente a cloro que se debe utilizar con precaución en los sistemas de agua de refrigeración clorados especialmente cuando se utiliza la cloración continua.

La adición de zinc a ATMP en cierta medida inhibe la disolución de cobre. En presencia de ATMP, sin embargo, el poderoso potencial oxidante de cloro promueve la disolución de cobre, cuando se utiliza el cloro como biocida.

El otro fosfonato utilizado en un grado mucho menor son, ácido fosfórico etileno diamina tetrametileno, ácido fosfórico diamina tetrametileno hexametileno y dietilentriamina pentametileno ácido fosfórico.

Consulte el artículo completo en http://www.altret.com/templates/images/editor/role-of-organo-phosphate-in-cwt.pdf

 

Ortofosfatos versus polifosfatos

La selección de un tratamiento de agua aditivo químico de fosfato puede ser una de las decisiones de tratamiento químico más difíciles que muchos de los sistemas públicos de agua harán. Esto es particularmente cierto porque la química de aditivos químicos de ortofosfato y polifosfato es complejo, y aditivos químicos de tratamiento de agua de fosfato están disponibles comercialmente en un número abrumador de mezclas químicas. Ortofosfatos y polifosfatos son sales derivadas de dos formas diferentes de ácido fosfórico. Ortofosfatos son moléculas pequeñas, formadas a partir de la forma más pequeña y la más básica de ácido fosfórico. Los polifosfatos son moléculas más grandes, formados a partir de una versión de cadena más larga de ácido fosfórico. A pesar de que las palabras de ortofosfato y polifosfato contienen la palabra "fosfato", estos dos compuestos químicos sirven radicalmente diferentes propósitos de tratamiento de agua. La falta de un sistema de servicio público a entender las diferencias significativas entre estos dos compuestos de tratamiento podría dar lugar a graves problemas de calidad del agua y las posibles violaciónes MCL. Una selección incorrecta de las mezclas químicas de fosfato mediante un sistema de servicios públicos podría incluso crear graves problemas de salud pública. En los sistemas públicos de agua, ortofosfatos se utilizan para fines de plomo y cobre la corrosión de control. Ortofosfatos reaccionan químicamente con los átomos de plomo y cobre que han lixiviado fuera de la tubería y han entrado en el agua circundante. Esta reacción química de ortofosfatos con átomos de plomo y cobre formas plomo y fosfato de cobre. El plomo y cobre fosfato es entonces electroquímicamente extrae de nuevo sobre la superficie de la tubería, donde se forma un revestimiento duro, resistente al agua en la tubería. Este revestimiento duro, resistente al agua ayuda a prevenir más lixiviación fuera de átomos de plomo y cobre en el agua circundante. La mayoría de los sistemas de servicios públicos han experimentado un éxito mucho mayor con el control de la corrosión de plomo ortofosfato de lo que han experimentado con el control de la corrosión del cobre ortofosfato. Los polifosfatos son agentes que son prácticamente ineficaces contra el plomo y la corrosión del cobre secuestrante. Cuando se secuestra un jurado en un juicio penal, que el jurado se "mantiene en reclusión." Un agente secuestrante químico es un agente químico que rodea otra molécula o átomo y sostiene que otra molécula o átomo "en reclusión." Al rodear la otra molécula o átomo y manteniéndolo en su aislamiento, el agente secuestrante química oculta la molécula o átomo de la vista y evita que entren en diversas reacciones químicas. Como un agente secuestrante, polifosfatos sólo secuestrar metales solubles "invisibles-en-agua" que no se han oxidado en sus formas insolubles. Polifosfato aplica al agua antes de que el agua se clora evitará hierro invisible y manganeso de convertirse en visible después de que el agua es clorada. Como un agente secuestrante, polifosfato de tratamiento de agua se utiliza para secuestrar átomos de hierro solubles que permanecen en agua sedimentada antes de que sea clorado o que de lixiviación fuera de la tubería de hierro en sistemas de distribución de agua. Por circundante y el secuestro de estos átomos de hierro solubles, se les impide la visualización de los colores rojizos típicos asociados con óxidos de hierro e hidróxidos de hierro. polifosfatos de tratamiento de agua también interfieren con la cristalización de y formación de escamas de calcio y carbonato de magnesio, pero no con la cystallization de y formación de escamas de hidróxido de magnesio. Si cualquiera de los átomos de manganeso solubles todavía están presentes en el agua después de que el flóculo se ha asentado fuera, polifosfatos también servirán para secuestrar estos átomos de manganeso solubles, evitando que se presentan el color típico de dióxido de manganeso oscuro. Un error bruto sobre polifosfato es la creencia de que el uso de secuestrantes de polifosfato para ocultar hierro y manganeso es una técnica de tratamiento casual, de rutina para la eliminación del exceso de hierro y manganeso que no se elimina durante los procesos de sedimentación y filtración de una planta de tratamiento de agua. En realidad, el uso de polifosfato para secuestrar hierro y manganeso que una planta no pudo eliminar durante los procesos de sedimentación y filtración es una maniobra desesperación. los quantites adversas de hierro y manganeso en el agua cruda deben estar debidamente oxidados por aireación, permanganato, o el ozono y deben ser depositados en depósitos de sedimentación como parte del floc. Polifosfatos, que secuestran hierro y manganeso por sólo un período limitado de tiempo, no son el ideal o la solución preferida para el hierro de cualquier planta de tratamiento de agua y problemas de manganeso. Los polifosfatos sólo deben utilizarse para atrapar las pocas partículas de hierro y manganeso que se perdieron durante el proceso de aireación y oxidación inicial. La mayoría de los compuestos de tratamiento de fosfato utilizados por los sistemas de tratamiento de agua públicos son en realidad mezclas de polifosfatos y ortofosfatos. Los polifosfatos se añaden habitualmente en su forma polifosfato de sodio o potasio. Ortofosfatos se añaden en forma de ortofosfato de sodio o de potasio o en una forma de ortofosfato que se mezcla con cloruro de zinc o sulfato de zinc. El zinc en la mezcla no juega ningún papel en la formación de los revestimientos que impiden plomo y cobre la corrosión. En cambio, el zinc juega un papel importante en la protección de superficies galvinized (medios galvanizado "recubierto de zinc") y en la prevención de las fibras de asbesto de la erosión fuera de las tuberías de amianto-cemento. Sin embargo, debe tenerse en cuenta, algunas mezclas de fosfato también pueden contener polifosfatos de zinc, pero las formulaciones de ortofosfato de zinc se utilizan mucho más comúnmente en las operaciones de tratamiento de agua pública. mezclas de tratamiento de agua de fosfato están disponibles en diferentes mezclas de decenas. No hay una mezcla perfecta que es de uso universal en todas las situaciones. Si un sistema de tratamiento de agua utiliza una mezcla con más polifosfato de que sus necesidades del sistema, los recubrimientos establecidos por el ortofosfato, se pueden quitar. Si un sistema de tratamiento de agua utiliza una mezcla de fosfato con más ortofosfato de que sus necesidades del sistema, el hierro puede ser despojado de distancia de las tuberías de hierro. plantas de tratamiento de agua deben evaluar regularmente los plomo, cobre, hierro, manganeso, y los niveles de asbesto en su agua y consultar con un especialista fosfato profesional siempre que un cambio en las mezclas de fosfato parece estar justificado. Sales de polifosfato COMUNES: pirofosfato de sodio ácido, pirofosfato de tetrasodio, pirofosfato de tetrapotasio, tripolifosfato de sodio, tripolifosfato de potasio, trimetafosfato de sodio, hexametafosfato de sodio (vítreo) COMUNES SALES ortofosfato: ortofosfato monosódico, monopotásico ortofosfato, ortofosfato de disodio, dipotasio ortofosfato trisódico ortofosfato, ortofosfato tripotásico, ortofosfato de zinc

post original por Bradley C. Williams en http://water-treatment-training.blogspot.com/2010/02/polyphosphates-and-orthophosphates.html

Pruebas y Control de Productos para Torres de Enfriamiento

Con el costo extremadamente alto de molibdeno en los últimos años, su uso como un inhibidor de la corrosión o agente de seguimiento en el enfriamiento de los productos de agua, donde el consumo de producto es significativa, se ha convertido en esencialmente un costo prohibitivo. Otros inhibidores de la corrosión tales como fosfatos, zinc, silicatos y compuestos de fósforo órgano-ahora se utilizan en gran medida en ausencia de molibdatos. También, el uso de molibdeno se ha restringido en algunas áreas debido a las preocupaciones ambientales, la mayoría centradas alrededor de las limitaciones de concentración en lodos generados municipal.

fosfatos

Donde ortofosfato o polifosfatos están en uso, las pruebas de que el fosfato es una prueba buena y precisa. Hay una serie de procedimientos de fosfato, pero todas las pruebas determinan ortofosfato. Otras formas de fosfato tales como polifosfato o organofosfatos primero deben ser convertidos a ortofosfato para determinar sus concentraciones con un procedimiento de ensayo de fosfato.

El control puede ser más complicada cuando hay fosfato en el agua de relleno. La forma del fosfato (ortofosfato, polifosfato, o ambos) y el intervalo de concentración necesita ser conocido de manera que se cuenta en el agua de refrigeración ciclado.

Ejemplo

agua de maquillaje contiene 0,5 ppm de ortofosfato y 0,4 ppm de un polifosfato como PO4. La torre de refrigeración se hace funcionar a cinco ciclos de concentración y un producto de agua de refrigeración que contiene se aplica 4% de ortofosfato. La dosificación del producto inhibidor deseado es de 100 ppm.

A los cinco ciclos, habrá 2,5 ppm de ortofosfato de la ortofosfato de agua de relleno, y 2,0 ppm de polifosfato aplicada desde el agua de reposición, pero algunos de ellos se han vuelto a ortofosfato. Debe probar para el polifosfato en el agua de la torre inicialmente y luego periódicamente para determinar la tasa de reversión para el sistema. Típicamente, suponemos sobre una tasa de reversión 50%. La tasa de reversión real dependerá de pH y tiempo de retención, y el tipo específico de polifosfato.

Si cuando se prueba el polifosfato mostró ser 1 ppm en el agua de la torre ciclado, entonces el ortofosfato total a partir de la composición sería 3,5 ppm. 100 ppm del producto inhibidor añadiría 4 ppm de ortofosfato, por lo que un residual probado de 7,5 ppm o ortofosfato indicaría que 100 ppm del producto estaba en el sistema.

 

Tabla 1: Resumen de fosfato

Las concentraciones de fosfato

Ortofosfato (ppm)

Polifosfato (ppm)

Hecho agua

0.5

0.4 como PO4

Torre de agua, 5 ciclos antes de Reversión

2.5

2.0

Torre de agua, 5 ciclos después de la reversión

3.5

1.0

Ortofosfato De Producto

4.0

 

En total completado un ciclo de la torre de agua

7.5

1.0

 

fosfonatos

La mayoría de todos los productos torre de enfriamiento contienen uno o más fosfonatos que se utilizan para la inhibición de incrustaciones, inhibición de la corrosión, o ambos. pruebas de fosfonato no es tan preciso como las pruebas de fosfato, pero se puede utilizar para el control de alimentación del producto. Los fosfonatos están sujetos a la oxidación a ortofosfato por cloro o bromo y se pierden a precipitación con cationes tales como calcio. Si el sistema está clorados o bromados, asumir un 20 - degradación de 30% a fosfato. La cantidad real se puede determinar mediante pruebas de fosfonatos residuales y fosfato.

Hay varios fosfonatos pruebas que se pueden utilizar:

  • Hach digestión UV, a continuación, prueba de fosfato. • ebullición con ácido y persulfato, seguido de la prueba de fosfato. • prueba de caída de Palintest. • Taylor prueba de caída.

La digestión UV

El procedimiento de prueba es el más preciso y tiene una reproducibilidad de aproximadamente ± 10%. Un reactivo de persulfato se usa junto con una luz UV para descomponer el organo-fosfato (fosfonato) a ortofosfato. Un procedimiento de prueba ortofosfato determina entonces la cantidad de fosfato aportado por los fosfonatos. Cualquier ortofosfato ya presente antes de la digestión se resta del total de ortofosfato después de la digestión. Esto puede hacerse mediante la adición de reactivos a la torre de agua que no ha tenido la digestión y utilizar esto como el espacio en blanco, o en realidad determinar ortofosfato en el agua de la torre y restarlo de la ortofosfato total determinado después de la digestión de persulfato.

La cantidad de fósforo en cada molécula fosfonato específica varía, por lo que es un factor de conversión específica de ortofosfato de fosfonato. Cada ppm de ortofosfato creado por la digestión HEDP = 1.085 ppm HEDP. El contenido de fósforo de PBTC es mucho menor. Cada ppm de ortofosfato creado a partir de la digestión de los PBTC = 2,84 ppm de la molécula de PBTC.

Ejemplo de ensayo fosfonato:

El agua de la torre ciclada tiene 6 ppm de ortofosfato y un producto de agua de refrigeración que contiene 2,5% PBTC y 1,8% HEDP se está aplicando a una dosificación deseada de 120 ppm.

Suponiendo que todos los fosfonatos permanecen como fosfonatos y no se han oxidado en la torre de enfriamiento por bromo o cloro y suponiendo que no se ha perdido a la precipitación, debe obtener 3,05 ppm de ortofosfato de los fosfonatos después de una digestión de persulfato / UV.

 

Tabla 2: Resumen de fosfato

De PBTC: 120 ppm x 2,5% = 3 ppm 3 ppm PBTC ÷ 2,84 ppm PBTC por ppm PO4 =

1,06 ppm ortofosfato

De HEDP: 120 ppm x 1,8% = 2,16 ppm

2,16 HEDP ÷ 1.085 ppm de HEDP por ppm PO4 =

1,99 ppm ortofosfato

De ortofosfato en el agua de la torre:

6 ppm

ortofosfato total en la muestra después de la digestión:

9.05 ppm

Ortofosfato de la digestión fosfonato:

3.05 ppm

 

Ebullición en ácido y persulfato

Una digestión también se puede lograr mediante la adición de ácido y persulfato, a continuación, hirviendo durante unos 30 minutos. Si se utilizara solo ácido, sólo el polifosfato se hidroliza o se volvió a ortofosfato. También se añade Es persulfato, los organo-fosfatos y polifosfatos se digirieron a ortofosfato. Esta prueba sería más aplicable para las muestras que no tienen polifosfatos, ya que la prueba no se distinguirá entre ortofosfato desarrollado a partir de fosfonatos o polifosfatos.

Fosfonato gota cuenta

Se recomienda el procedimiento de Palintest. Este procedimiento es menos precisa y sujeta a interferencias. Lo mejor es determinar el número de gotas en una concentración de producto conocido y relacionar el número de gotas a esa concentración. Es recomendable comparar estos resultados también inicialmente y de forma periódica con el método de digestión.

Donde PBTC está en uso, se prefiere el método Palintest. El procedimiento amortigua el pH a alrededor de 3,0 y es más eficaz en la detección de la PBTC junto con el HEDP y AMP.

En el método de Palintest, cada uno de 0,7 ppm de HEDP o AMP en el agua debe requerir una gota de reactivo de valoración, y cada 2,0 ppm de PBTC deben requerir una gota.

Polifosfato y algunos compuestos orgánicos van a interferir con la prueba y se muestran como fosfonatos. Para dar cuenta de esto, un espacio en blanco se ejecuta en el agua de reposición. Si se necesitan dos gotas para el cambio de color en el espacio en blanco, entonces esos dos gotas se restan de los resultados de la prueba del agua tratada. Tenga en cuenta que los resultados en blanco no son reciclados por los ciclos de la torre. Polifosfatos vuelven a ortofosfato que no interfiera y la experiencia ha demostrado que la bicicleta en blanco no se debe hacer. Si el producto contiene polifosfato y una residual en el agua ciclada, aumentará el número de gotas necesarias.

Si fluoruros están en el agua probado ciclada a> 1,0 ppm, esto provoca una interferencia sustancial que puede descalificar el procedimiento de prueba de caída de ser utilizable. Es aconsejable consultar con el proveedor de la ciudad para ver si agregan fluoruros y en qué nivel. Si los altos fluoruros están presentes, una idea que puede funcionar es ejecutar primero el procedimiento de prueba de caída en el agua de la torre para obtener un número de referencia. A continuación, tomar una muestra del agua de la torre completado un ciclo y añadir 100 ppm de producto y ver cuántas gotas son obligatorios. Restar el número de gotas utilizados para la línea de base de las gotas requeridas para la muestra de 100 ppm para determinar cuántas gotas representan 100 ppm de producto como una base para el establecimiento de límites de control.

El punto final Palintest es la caída cuando se produce el cambio de color de verde / gris a azul / púrpura primero.

Palintest fosfonato gota cuente Ejemplo:

El agua de refrigeración se trata con 140 ppm de un producto que contiene 2,5% PBTC y 1,8% HEDP. El producto tiene una gravedad específica de 1,16. No hay fluoruro en el agua.

En primer lugar, determinar las interferencias en el agua de relleno mediante la ejecución del procedimiento de la prueba en una muestra no tratada. En este ejemplo, asuma que tomó dos gotas.

A continuación, hacer una solución de 100 ppm. Para ello añadir 1 gramo o 0,86 ml (1 ml / 1,16 gramos / ml) del producto químico a 99 gramos (99 ml) de agua de reposición. Mezclar esta bien, a continuación, añadir 1 gramo (1 ml) de esta solución de 1% a 99 gramos (99 mls) de agua de reposición. Esto es ahora una solución 0,01% o 100 ppm del producto. Esto colocaría 1,8 ppm de HEDP y 2,5 ppm de PBTC en la solución. Ejecutar la prueba de fosfonatos en esta solución, y para este ejemplo se requiere el número teórico de gotas de alrededor de 6.

 

Tabla 3: Teórico Uso fosfonato Titrante

De HEDP: 1,8 ppm ÷ 0,7 ppm de HEDP / gota

2.5 Gotas

De PBTC: 2,5 ppm ÷ 2,0 ppm PBTC / Drop

1,25 Gotas

De blanco:

2 gotas

Gotas en total:

5.75 gotas, lo que requerirá 6 gotas para ver el cambio de color.

140 ppm de producto sería de aproximadamente (140 ÷ 100) x 4 gotas = 5,6 gotas o 5-6 gotas + 2 gotas para el blanco = 8 gotas. Esto se puede confirmar mediante una solución de 140 ppm y probarlo.

Azoles, zinc, sílice o pruebas

Los procedimientos de ensayo Hach para azol, zinc, o sílice pueden usarse para comprobar la dosis de producto cuando el ingrediente específico está en el producto aplicado. Recuerde, como con fosfonatos, las concentraciones aplicadas y los residuos reales pueden ser diferentes. residuos azoles disminuyen a medida que la película con cobre. Zinc se pierde a medida que precipita en el cátodo o en el agua a granel. Silica se pierde como el filme superficies metálicas. Al establecer rangos de control y las dosis, tome en cuenta algunas de estas pérdidas. Por ejemplo, podemos aplicar azol a 2 ppm, pero tienen un residual deseado en el agua de tan sólo 1 ppm.

Balance de masa

dosificaciones químicas deben ser confirmados por balances de masa y se compararon con la prueba química. Mecanismos deben establecerse en cada sistema para determinar convenientemente maquillaje agua, ciclos, la pérdida de agua, y el consumo de productos químicos. La concentración en el agua de recirculación debe calcularse a partir del uso del producto real y la purga o la pérdida de agua.

Ejemplo balance de masas:

La torre de refrigeración está operando a cinco ciclos de concentración. El medidor de maquillaje muestra 120000 maquillaje gpd. A los cinco ciclos, esto es una pérdida de agua de 24.000 gpd. El producto que se alimenta contiene 1,8% HEDP, PBTC 2,5%, 1,5% BZT, y 1% de zinc; y la dosis deseada es 100 ppm.

el uso del producto Daily determinado por el nivel de tambor y se confirmó con la prueba de cilindro reducción es de 28 libras por día. Esta es una dosis aplicada calculada de 140 ppm de producto en el agua de la torre de enfriamiento ciclado (140/120 x 24.000 / 1000 = 28 lbs).

pruebas químico mostró 4 gotas de fosfonatos (6 gotas de la prueba - 2 gotas para el blanco), que se determinó previamente para representar 100 ppm producto. Las pruebas también reveló 1,5 ppm BZT y 0,8 ppm de residuos de zinc en el agua. Todas las pruebas químicas muestran que una parte del componente activo se ha consumido o residuos habría sido mayor a 140 ppm de producto aplicado.

Componente del producto

Los residuos sin pérdida esperada cuando se aplica a 140 ppm

Calculado dosificación basada en Actual Residual

Producto de la pérdida de Reacciones del sistema

fosfonato

8 gotas

6 gotas

= 100 ppm del producto

40 ppm del producto

BZT

2,1 ppm

1,5 ppm BZT

= 100 ppm del producto

40 ppm producto

Zinc

1,4 ppm

0,8 ppm Zinc

= 80 ppm del producto

60 ppm del producto

 

Conclusión

Balance de masa es la forma más exacta para determinar la dosis aplicada. Si la dosis producto fue proyectado para ser eficaz en 100 ppm, es probable que este producto se está sobrealimentado por 40%. Pruebas químicas sugiere que hay más de residual suficiente de componentes activos incluso después de una cierta pérdida para el sistema, por lo que la dosis de producto se puede bajar y resultados monitoriza para confirmar que se mantienen los resultados deseados. No se espera que sea una cierta pérdida de componentes activos ya que reaccionan con los materiales en el sistema y las impurezas en el agua.

Cuando se utiliza molibdato o se ha utilizado como un método de monitorización para el control del producto y el consumo, generalmente su pérdida para el sistema es mínimo. Eso significa que si el producto mostrado arriba contenía 1% de molibdato como Mo,

es probable que los resultados de ensayo habrían sido muy cerca de 1.4 ppm Mo y la dosificación del producto se habría disminuido a 100 ppm para bajar Mo a 1,0 ppm. Molibdato utiliza como trazador, entonces, sería comúnmente producir una menor tasa de uso del producto, porque los otros componentes activos no serían ordinariamente pueden utilizar para controlar la dosificación.

Reduccion del uso de agua en torres de enfriamiento con automatización

Con la iniciativa del Estado para reducir el consumo de agua en un 20 por ciento para el año 2020, muchas plantas en California están tratando de ser más respetuosos con el medio ambiente. Una de esas instalaciones incluye un hospital líder en California, que trató de reducir los costos de tratamiento de agua para su sistema de climatización. El hospital cuenta con tres sistemas de torres de enfriamiento individuales que dan servicio a tres enfriadores centrífugos, con un total combinado de 2.800 toneladas de capacidad.

El programa de tratamiento de agua actualmente en uso en la instalación estaba operando a 2,8 ciclos de concentración, resultando en 35,7 por ciento de la composición agua de la torre se sangró a la alcantarilla por el proveedor de tratamiento actual. Teniendo en cuenta la calidad del agua en la zona, estos eran los ciclos máximos de concentración que podrían lograrse sin emplear el uso de reblandecimiento ácido o agua. El ahorro que el hospital solicitó se realizaron mediante la revisión de varias formas de optimizar el programa de tratamiento de agua. Trabajando en estrecha colaboración con el Departamento de Agua y Energía (LADWP) Los Ángeles, se reveló que mediante la introducción de un programa de conservación de agua para reducir el uso del agua a través de mayores ciclos de concentración, la instalación realidad ahorraría más dinero que se gastaría para alterar el programa , por lo que el proyecto propuesto sostenible.

A través de pruebas y análisis de laboratorio, el equipo fue capaz de concluir que seis ciclos de concentración podrían alcanzarse, resultando en sólo el 16,7 por ciento del agua de maquillaje torre siendo desangrado en el sistema de tratamiento de alcantarillado. Esto se podría lograr mediante la introducción de un sistema de alimentación de ácido seguro que minimizaría escala, la corrosión y el ensuciamiento microbiológico para permitir el aumento de ciclos de concentración al mismo tiempo proteger personal de la instalación entre en contacto con los productos químicos.

La evaporación de la torre de refrigeración sigue siendo el mismo, pero el agua de Estados Unidos fue capaz de reducir la purga, cortando el consumo de agua en un estimado de 3.6 millones de galones por año y la disminución de los costos de agua y alcantarillado. La planta fue capaz de ahorrar más de $ 76.000 (ver Fig. 1).

química en cualquier momento en la torre de refrigeración está estresado por la adición de más ciclos, se requiere un control estricto de la química para evitar la formación de incrustaciones. Esto llevó a la introducción de controles de automatización avanzada de agua de Estados Unidos. El programa de automatización avanzada incluye notificaciones de vigilancia y alarmas inalámbricas para gestionar el rendimiento general del programa, y ​​el equipo de conductividad, pH, los niveles de inhibidor de incrustaciones, el uso de la torre de maquillaje, y la utilización de la torre de purga monitoreado.

En un momento dado, el personal del hospital y los representantes designados de agua de Estados Unidos, utilizando varios niveles de seguridad de la contraseña-protegida indicado por la instalación, se puede acceder de forma segura los datos para la revisión y ajuste en línea. Si los parámetros designados cayeron encima o por debajo del intervalo especificado, un representante de aguas US fue alertado para una respuesta rápida (véase Fig. 3).

Segundo para riego, torres de enfriamiento ofrecen el mayor potencial de ahorro de agua en California. Como un incentivo adicional, el estado de California ha puesto en marcha programas para rebajar la instalaciones para el coste de la automatización de sus sistemas. LADWP y el Distrito Metropolitano de Agua (MWD), por ejemplo, ofrecen tres programas que financian la automatización de las torres de enfriamiento debido a su capacidad para aumentar ciclos de concentración, lo que reduce el consumo de agua.

 

Esta permitido la financiación de agua de Estados Unidos para implementar el programa de automatización avanzada $ 34.000 a monitorear y controlar el programa de tratamiento de agua para este hospital sin costo alguno para el hospital.

Los resultados hasta la fecha para la instalación incluyen la reducción significativa en el consumo de agua, el agua baja y las facturas de aguas residuales y un control más eficiente debido a la automatización de software instalado para proteger los bienes de equipo.

You will find this article here: http://www.waterworld.com/articles/iww/print/volume-14/issue-5/columns/case-study/hospital-reduces-water-usage-in-cooling-towers-with-automation.html

Los métodos para determinar el cloro y sus subproductos oxiclorados en agua

El análisis de dióxido de cloro y su oxiclorados que adhiriéndose por los productos en agua es un tema difícil debido a la volatilidad del dióxido de cloro y a las interferencias de otras especies con métodos de prueba estándar. En las muestras reales, esto se complica aún más ya que el dióxido de cloro se utiliza a menudo en un sistema que es dinámico y por lo tanto de muestreo también es importante.

Reglamento de la USEPA

La USEPA requiere que tanto el dióxido de cloro (ClO2) y clorita (ClO2-) son monitoreados diariamente al inicio de una red de distribución y que el clorito se mide con menos frecuencia en varios puntos a lo largo de una red. No se requiere clorato, aunque se incluye bajo la Regla de recopilación de información.

Los siguientes son métodos que han sido aprobados por la USEPA para el control de ClO2:

  • valoración amperométrica (Método Estándar 4500 - CIO2 E)
  • Colorimétrico DPD (Método Estándar 4500 - ClO2 D)
  • Colorimétrico Lissamine Green (USEPA Método 327.0 V1.1)
  • Sistema Chlordiox Plus Sensor

Como DPD se ha eliminado como un método estándar para determinar ClO2 por el comité AWWA Standard Methods, la EPA también, probablemente, y eliminar lo más pronto posible.

En cuanto a clorito, hay algunos métodos (tales como la cromatografía de iones) aprobadas para el seguimiento de clorito. Ninguno de ellos son verdaderamente portátil como el Chlordiox Plus es lo que es el único método aprobado USEPA portátil para la determinación de clorito.

Métodos en detalle

  • valoración yodométrica (Método Estándar 4500 - ClO2 Método B) -valoración yodométrica de ClO2, Cl2, ClO2- y ClO3- es posible con pesar de que es un procedimiento muy difícil y requiere mucho tiempo para separar todas las especies oxiclorados que adhiriéndose. Es un método mejor para la normalización de soluciones de dióxido de cloro.
  • métodos amperométricos

Método Estándar (4,500 -ClO2 Método C)- amperométrico titulación es un método electroquímico que mide el flujo de corriente cuando se aplica una tensión fija a un electrodo. Mediante la medición de la corriente, mientras que la realización de una valoración con óxido de phenylarseine, cada especie oxiclorados que adhiriéndose se pueden separar a cabo y cuantificarse. Sin embargo, Método C ahora se ha eliminado como un método aprobado EPA para la medición de dióxido de cloro en el agua potable debido a la debilidad inherente en el método de ensayo.

Método amperométrico (4500 - Método CIO2 E)- Principio es según el Método C y el procedimiento también es similar, pero se evitan las debilidades inherentes de prueba. Este método es el método estándar que todas las evaluaciones Chlordiox Plus se compararon con y es el método estándar de la industria. En teoría, así como dióxido de cloro, cloro y clorito, clorato también puede llevarse a cabo utilizando este método, pero es complicado y por lo tanto por lo general llevado a cabo a través de cromatografía de iones.

  • método DPD Colorimetría (4500 - ClO2 Método D - Reserved)- El estándar de la industria para la prueba portátil de dióxido de cloro (y a un clorito grado) pero de acuerdo con la investigación reciente no es lo suficientemente selectiva en la presencia tanto de dióxido de cloro y el clorito y también sufre de otras interferencias tales como cromato y manganeso oxidado. Ya no es un método estándar (AWWA), pero sigue siendo un método EPA aprobado.
  • Lissamine (LGB) Verde- No es un método estándar, pero un método aprobado EPA para la medición de dióxido de cloro (y clorito en presencia de peroxidasa de rábano picante). Es dependiente de la temperatura, ya que elimina el color del indicador verde lisamina y, por lo tanto, no es fácil de usar en el campo y en su mejor momento en un entorno de laboratorio.
  • Ion Chromatography (4110 Determinación de Oxihalogenuros usando Ion Chromatography) - El método estándar para el clorito y clorato de determinación y un requisito USEPA aunque obviamente no es una prueba de campo.
  • espectrofotometría - El dióxido de cloro se puede medir fotométricamente a 360 nm usando un espectrofotómetro estándar, aunque el límite de detección es relativamente alta y soluciones que contienen dióxido de cloro y clorito puede ser susceptible a la interferencia (especialmente en longitudes de onda más largas) lo que de nuevo se utiliza mejor como una herramienta para la estandarización de soluciones. Algunos kits de prueba de campo también utilizan este método, pero en longitudes de onda en la región visible.

Otros métodos colorimétricos

Otros métodos colorimétricos están disponibles sin embargo ninguno ha sido aprobado para las pruebas de cumplimiento.

Este resumen de los métodos se basa en Manual de cloración y alternativos Desinfectantes de White por el Negro y Veatch Corporation, publicado por Wiley en 2010.

Vea aquí una lista de métodos de la EPA aprobados para dióxido de cloro y clorito de monitoreo bajo el programa de métodos de ensayo alternativos

 

Fundamentos de corrosion en sistemas con agua

Sistemas de análisis de líquidos y sensores están cuestan herramientas eficaces contra la corrosión.

 

Agua plus de metal es igual a la corrosión. Esta realidad ataca la línea inferior de cada planta de generación de energía de vapor impulsado en el mundo.

En una planta de energía de vapor, agua de alta pureza se calienta y se hierve para producir vapor, que energiza y acciona una turbina para producir electricidad.

El agua y el vapor están en constante contacto con las superficies metálicas que amenazan la integridad de equipos de la planta como condensadores, calentadores, bombas, tuberías, calderas y turbinas.

Afortunadamente, purificación de agua y producto químico de tratamiento a reducir y controlar la corrosión en la planta en gran medida. Asegurar buena química ciclo para evitar la corrosión, sin embargo, requiere mediciones precisas y continuas de análisis en el tren de desmineralización, agua de enfriamiento, el condensado, y la caldera de agua de alimentación y los sistemas de vapor.

Si bien las directrices dadas a continuación abordan las necesidades de una planta de generación de energía de vapor impulsado, también pueden ser útiles en otras instalaciones de fabricación en donde el agua juega un papel importante.

La corrosión se produce cuando los iones metálicos transfieren de un metal de base al agua y se combinan con el oxígeno para convertirse en hidróxidos e hidróxidos de metal sólido. partículas resultantes a menudo viajan a otras partes del sistema y se depositan.

Reaccion de corrosion

 

El depósito es un mal conductor

Una vez que se forma un depósito, que atrae más sólidos en suspensión y el depósito crece. Depósitos con frecuencia se acumulan en las superficies de intercambio de calor, tubos de calderas, y calentadores.

El depósito es un conductor pobre de calor que el metal y, por lo tanto interfiere con la transferencia de calor a través del tubo. Esto reduce la eficiencia global del ciclo y puede causar fallos de sobrecalentamiento del tubo locales. Los depósitos también pueden reducir significativamente la eficiencia de las turbinas y, a su vez, se convierten en sitios de corrosión cuando se disuelven los sólidos atrapados en el concentrado de depósito como el líquido hierve lejos. Eventualmente, la concentración alcanza niveles muy corrosivos y graves deficiencias de depósito se produce la corrosión.

Una película de óxido resistente que protege el metal de base es la mejor manera de defender hierro y cobre de la corrosión. Para el hierro y el acero al carbono, la película protectora es magnetita.

Para las aleaciones de cobre y de cobre, la película protectora es óxido cuproso. Esta película funciona sólo en la presencia de la química del agua adecuadamente controlado.

la química del agua adecuada también asegura que la película no se desgasta y, si se produce una ruptura, la película se repara rápidamente.

El control de la química del agua requiere el mantenimiento de agua de alta pureza, el control de pH, el seguimiento de las cantidades de trazas de oxígeno disuelto, y, si es necesario, controlar la alimentación de un agente de eliminación como hidrazina.

Tren de desmineralización

La primera línea de defensa contra la corrosión en una planta de energía de vapor es el uso de agua de alta pureza. La producción de que el agua es la función del tren de desmineralización, que convierte el agua en bruto que contiene entre 100 y 1.500 ppm de sólidos disueltos en el agua que contiene no más de 10 a 20 ppb sólidos disueltos. Los pasos de tratamiento pueden incluir filtración, ablandamiento, la eliminación de cloro, ósmosis inversa, desgasificación, y el intercambio de iones.

ósmosis inversa eficaz (RO), en la que las fuerzas de agua a través de una membrana semi-permeable, puede eliminar aproximadamente el 98% de las sales disueltas y de sílice en el agua en bruto y moléculas orgánicas casi todas las grandes. Ponerse en contacto con sensores de conductividad colocados en el agua de alimentación y del permeado de la RO permiten operadores de plantas de supervisar la calidad del agua y la eficiencia general del sistema de RO.

Las mediciones de conductividad en RO impregnan y agua de alta pureza no son simples, sin embargo. La calibración de sensores es complejo y debe tener lugar mediante la comparación del sensor contra un Instituto Nacional de Estándares y celular calibrada trazable Tecnología (NIST) de una constante de celda conocidos o mediante la calibración del sensor en una solución certificada. Sin embargo, tras la exposición a la atmósfera, patrones de conductividad de alta pureza y falta de agua a través de la absorción de dióxido de carbono del aire circundante y cualquier residuo en el recipiente de muestra. Para evitar la contaminación, puede ser deseable usar sensores de pre-calibrados a los estándares NIST. instrumentos de validación de conductividad están disponibles que se conectan al proceso a través de la tubería, eliminando los efectos de la atmósfera en la medición.

Típicamente, agua de alimentación a un sistema de RO se someterá a tratamiento y ya contendrá los productos químicos para asegurar un funcionamiento óptimo. Estos productos químicos, sin embargo, requieren una vigilancia cuidadosa, o pueden atacar a las membranas de OI. Esto es particularmente cierto si el agua de alimentación se encuentra fuera del intervalo ácido deseado. Los operadores de planta requieren sensores de pH de uso general para mantener la acidez leve en el agua de alimentación. El cloro puede estar en el agua de alimentación en algunas plantas como un biocida o necesita la eliminación en otros por medio de un lecho de carbón porque ataca las membranas de OI. Sin embargo, lechos de carbón alcanzan la saturación con el tiempo, por lo tanto, los monitores de cloro detectan avance de cloro.

La ósmosis inversa sola rara vez puede producir agua de pureza suficiente para el maquillaje. El permeado de RO se suele pulido usando un intercambiador de iones (IX). Estos sistemas consisten en tanques que contienen perlas de resina tratados selectivamente para adsorber o bien cationes o aniones. A los intercambios de cama de cationes cargados positivamente iones (tales como calcio, magnesio y sodio) para el hidrógeno, y los intercambios de cama anión cargado negativamente iones (tales como cloruro, sulfato y bicarbonato) para hidroxilo. El hidrógeno desplazados e hidroxilo se combinan para formar agua pura. Después de una cierta cantidad de uso, estos sistemas se agotan y deben ser regeneradas usando ácido sulfúrico o clorhídrico para la resina de catión y el hidróxido de sodio para aniones. El seguimiento de la concentración de ambas de estas sustancias debe ocurrir continuamente con sensores de conductividad medir el regenerante medida que entra en el tanque. Durante enjuague, las mediciones de conductividad toroidales realizadas en el efluente del lecho determinar qué tan bien enjuagados los regenerantes son.

 

Las variaciones en el diseño de la torre de enfriamiento

En el condensador, la recirculación de agua de refrigeración convierte turbina de vapor de escape en el condensado. El agua de enfriamiento generalmente contiene altos niveles de sólidos disueltos, y las fugas de agua de refrigeración en el ciclo de vapor es una fuente importante de contaminación.

Las fugas introducen iones que aumentan la conductividad y aumentar la corrosividad del agua de alimentación, caldera de agua y vapor. Para dar indicación temprana de fugas y para supervisar el rendimiento del condensador en general, la conductividad de cationes de los registros de descarga de la bomba de condensado en un sensor de conductividad de flujo a través.

Además, el seguimiento de condensado y de agua de alimentación pureza requiere medir la conductividad de cationes. Después de que el condensado pasa a través de la columna de cationes, la conductancia de los aumentos de sal contaminantes, ya que convierte a un ácido significativamente más conductor.

Hay un mayor énfasis en la industria de la reutilización de agua de refrigeración mediante torres de refrigeración. El efecto de enfriamiento viene por la evaporación de una pequeña fracción de intercambio de agua y el calor con el aire que pasa a través de la torre de refrigeración. Como el agua se evapora, sin embargo, los sólidos disueltos se concentran, provocando finalmente que la escala y la corrosión en el equipo de intercambio de calor. Aunque hay muchas variaciones en el enfriamiento de diseño de la torre, una característica común es el control de la calidad del agua con el uso de mediciones de conductividad y pH continuos para mantener un conjunto dado de condiciones. Un sensor de conductividad en contacto mide la concentración relativa de las impurezas en el agua. El analizador de ese sensor inicia la apertura de una válvula de purga cuando la conductividad es demasiado alta. A continuación se introduce la pureza del agua más alta de maquillaje que reduce la conductividad.

Como la mayoría de impurezas en el agua de refrigeración son alcalinas, una pequeña cantidad de ácido sulfúrico se agrega en al agua en circulación para bajar el pH y por lo tanto prevenir la formación de incrustaciones. La medición de este concentración de ácido sulfúrico y manteniendo el pH por debajo de siete, donde es menos probable que ocurra de escala (como se indica por el índice de Langelier), se logra mejor por un sensor de pH de propósito general. agua que contiene un alto nivel de sólidos en suspensión de refrigeración, sin embargo, requiere el uso de sensores de pH más especializados más resistente al ensuciamiento.

El condensado de agua de alimentación

La torre de refrigeración se convierte en vapor de agua en el agua después de salir de la turbina. El agua de reposición del tren desmineralización se suma a esta agua para convertirse en agua de alimentación, que bombea a través de una serie de calentadores a la caldera. El control de la corrosión en el condensado y el sistema de alimentación de agua se logra generalmente en una de dos maneras, todo tratamiento volátil (AVT) y el tratamiento oxigenada (OT). AVT utiliza amoníaco para controlar el pH y la hidrazina para proporcionar un ambiente reductor para la protección de aleaciones de cobre. AVT requiere la medición de amoniaco, oxígeno disuelto, y la hidrazina. medición de amoníaco puede ocurrir ya sea directamente o indirectamente de pH y conductividad. El método indirecto es útil porque el amoníaco reacciona en agua para producir iones hidróxido. Tanto la conductividad, que es una medida de los iones en soluciones, y pH, que es una medida indirecta de iones hidróxido, puede combinar para producir la concentración de amoníaco.

OT utiliza amoníaco para controlar el pH y rastrear de oxígeno para proporcionar un ambiente ligeramente oxidante que promueve la formación de una película de óxido modificado resistente. La calidad del agua para OT es más estricta que para AVT, lo que requiere la conductividad de cationes de menos de 0.15 micro Siemens / centímetro. Es necesario para medir el oxígeno disuelto, pH, y la conductividad de cationes en sistemas de agua de alimentación utilizando el método de OT. medición del pH puede ser difícil en agua de baja conductividad y requiere el uso de tecnología que fluye referencia. Una medición de pH requiere continuidad eléctrica entre la referencia y electrodos de vidrio y un camino a la tierra solución. agua de alta pureza no proporciona suficiente conductividad para completar de forma fiable estos caminos y causa potencial de unión que registra la deriva como errático y compensado en la medición de pH. Una referencia que fluye elimina este efecto mediante la estabilización de la potencial de unión. Esta medición se lleva a cabo en una línea de derivación con el fin de preservar la calidad de la alimentación de agua y preferiblemente en una cámara de medición de acero inoxidable para disipar la corriente electrostática generada por el agua de alta pureza. Desde alta pureza pH es de flujo sensible, las tasas de flujo debe ser muy bajo y constante.

tratamiento con vapor de agua de la caldera

La caldera es el punto de recogida final para todos los contaminantes corrosivos y escala productoras generados aguas arriba. corrosión sólido aterriza en las superficies de los tubos de la caldera y crece mediante la recopilación de más materia suspendida. Eventualmente, el sobrecalentamiento y producir fallo de los tubos. El mantenimiento de una película de óxido protectora es la forma óptima para limitar la corrosión del agua, y esto ocurre más fácilmente cuando el mantenimiento de una baja concentración de sólidos disueltos en un entorno de pH ligeramente alcalino. Para lograr esto, la medición continua tanto de pH y conductividad tiene que ocurrir. se requiere medidas de conductividad, la concentración de sólidos disueltos y un sensor de conductividad de larga duración. Para mantener el ambiente alcalino necesario, las plantas de energía comúnmente tamponar el agua de la caldera con sales de hidróxido de sodio y fosfato de sodio. La sobrealimentación o subalimentación de estos productos químicos pueden ser perjudiciales, sin embargo, y las mediciones de pH y fosfato, por lo tanto precisas son críticas.

agua de la caldera también se somete a tratamiento con el fin de producir vapor de agua de alta pureza. Impurezas en el agua de la caldera de la caldera y de tambor de arrastre en forma de vapor, que se deposita sobre la turbina y causa daños por erosión. La sílice es el contaminante más notoria, y es necesario medirlo en el agua de la caldera y el vapor. Las sales tales como sales de hidróxido de sodio y amoníaco también se vaporizan en el vapor y el flujo en la turbina, donde se precipitan, se concentran, y se convierten en altamente corrosivo. Para controlar la contaminación en el vapor, la medición de la conductividad del agua de la caldera debe suceder, que mide indirectamente los sólidos disueltos. A continuación, purga controla la cantidad de contaminación.

Por lo tanto, para evitar la corrosión incontrolada que cuesta los mil millones de la industria eléctrica de dólares cada año, monitorear la calidad del agua y controlar rigurosamente que la calidad de forma continua.

sistemas de análisis de líquidos y sensores son de trabajo duro, fácil de usar, cuesta herramientas eficaces cuando se mide contra el impacto de la corrosión en los costes y operaciones de la planta.

Mientras que cada planta es diferente, se requiere generalmente una gran variedad de instrumentos de detección de pH y conductividad para prácticamente cada paso del proceso de generación de fuerza de vapor.

Más allá de eso, las plantas individuales requerirán oxígeno disuelto, el ozono, cloro, y otras mediciones más especializados.

Muchas plantas están optando por sistemas de control digital centralizada para controlar continuamente la salida de los analizadores y automatizar muchas funciones de control. Esto reduce el impacto sobre el personal y permite la gestión de control de la corrosión para funcionar como una máquina bien engrasada.

Lo más importante, la clave para el control de la corrosión éxito es la continuidad de la medición.

Las muestras individuales y otras técnicas de medición periódicas son inadecuados para la tarea. Sólo continua, análisis en tiempo real ofrece la garantía de la calidad del agua que requiere control de la corrosión.

Detrás del carril

pH detectar una persecución venerado

En el siglo decimosexto, alquimista Leonard Thurneysser descubrió que el matiz de la savia violeta cambió con la adición de ácidos sulfurosos o sulfúrico. Este indicador temprano fue ampliamente utilizado a través de los siglos posteriores para detectar ácidos.

Con introducción de la teoría iónica en la década de 1880 de Svante Arrhenius, se desarrollaron las primeras teorías referentes a la disociación de ácidos y bases. Johannes Bronsted, que postularon que los ácidos y bases son sustancias capaces de cualquiera de donar o aceptar iones de hidrógeno, refinó aún más estas teorías iniciales.

Por 1904, Hans Friedenthal había establecido con éxito la primera escala de clasificación de ácidos mediante la determinación de las constantes de disociación para los ácidos débiles, de acuerdo con la conductividad y la correlación de los cambios de color que corresponden a diferentes concentraciones de iones hidrógeno utilizando 14 colorantes que indican.

Los números de la concentración de iones de hidrógeno a partir de los cálculos de Friedenthal eran pequeños y difíciles de manipular. Por lo tanto, Lauritz Sorensen sugirió utilizar el logaritmo negativo de estos números, que él dobló el "exponente de hidrógeno" o "pondus Hydrogennii."

Esto llevó al desarrollo de la expresión del pH y la creación de la escala de pH moderna.

 

 

 

 

Originó publicada en: https://www.isa.org/standards-and-publications/isa-publications/intech-magazine/2005/may/sensing-ph-controlling-ph/